9,115 research outputs found

    Comparison of Genetic Algorithm Based Support Vector Machine and Genetic Algorithm Based RBF Neural Network in Quantitative Structure-Property Relationship Models on Aqueous Solubility of Polycyclic Aromatic Hydrocarbons

    Get PDF
    AbstractA modified method to develop quantitative structure-property relationship (QSPR) models of organic contaminants was proposed based on genetic algorithm (GA) and support vector machine (SVM). GA was used to perform the variable selection and SVM was used to construct QSPR model. In this study, GA-SVM was applied to develop the QSPR model for aqueous solubility (Sw, mg•l-1) of polycyclic aromatic hydrocarbons (PAHs). The R2 (0.980), SSE (2.84), and RMSE (0.25) values of the model developed by GA-SVM indicated a good predictive capability for logSw values of PAHs. Based on leave-one-out cross validation, the results of GA-SVM were compared with those of genetic algorithm-radial based function neural network (GA-RBFNN). The comparison showed that the R2 (0.923) and RMSE (0.485) values of GA-SVM were higher and lower, respectively, which illustrated GA-SVM was more suitable to develop QSPR model for the logSw values of PAHs than GA-RBFNN

    Design method for stabilization of earth slopes with micropiles

    Get PDF
    AbstractAs one of the measures for slope fast reinforcement, micropiles are always designed as a group. In this paper, an analytic model for the ultimate resistance of micropile is proposed, based on a beam–column equation and an existing p–y curve method. As such, an iterative process to find the bending moment and shear capacity of the micropile section has been developed. The formulation for calculating the inner force and deflection of the micropile using the finite difference method is derived. Special attention is given to determine the spacing of micropiles with the aim of achieving the ultimate shear capacity of the micropile group. Thus, a new design method for micropiles for earth slope stabilization is proposed that includes details about choosing a location for the micropiles within the existing slope, selecting micropile cross section, estimating the length of the micropile, evaluating the shear capacity of the micropiles group, calculating the spacing required to provide force to stabilize the slope and the design of the concrete cap beam. The application of the method to an embankment landslide in Qinghai province, China, is described, and monitoring data indicated that slope movement had effectively ceased as a result of the slope stabilization measure, which verified the effectiveness of the design method

    Progressive Transfer Learning for Dexterous In-Hand Manipulation with Multi-Fingered Anthropomorphic Hand

    Full text link
    Dexterous in-hand manipulation for a multi-fingered anthropomorphic hand is extremely difficult because of the high-dimensional state and action spaces, rich contact patterns between the fingers and objects. Even though deep reinforcement learning has made moderate progress and demonstrated its strong potential for manipulation, it is still faced with certain challenges, such as large-scale data collection and high sample complexity. Especially, for some slight change scenes, it always needs to re-collect vast amounts of data and carry out numerous iterations of fine-tuning. Remarkably, humans can quickly transfer learned manipulation skills to different scenarios with little supervision. Inspired by human flexible transfer learning capability, we propose a novel dexterous in-hand manipulation progressive transfer learning framework (PTL) based on efficiently utilizing the collected trajectories and the source-trained dynamics model. This framework adopts progressive neural networks for dynamics model transfer learning on samples selected by a new samples selection method based on dynamics properties, rewards and scores of the trajectories. Experimental results on contact-rich anthropomorphic hand manipulation tasks show that our method can efficiently and effectively learn in-hand manipulation skills with a few online attempts and adjustment learning under the new scene. Compared to learning from scratch, our method can reduce training time costs by 95%.Comment: 12 pages, 7 figures, submitted to TNNL

    Inverse Ising effect and Ising magnetoresistance

    Full text link
    Ising (Zeeman-type) spin-orbit coupling (SOC) generated by in-plane inverse asymmetry has attracted considerable attention, especially in Ising superconductors and spin-valley coupling physics. However, many unconventional observations and emerging physical phenomena remain to be elucidated. Here, we theoretically study the spin texture of {\sigma}_z (spin angular momentum projection along z) induced by Ising SOC in 1Td WTe2, and propose an unconventional spin-to-charge conversion named inverse Ising effect, in which the directions of the spin current, spin polarization and charge current are not orthogonal. In particular, we predict the Ising magnetoresistance, whose resistance depends on the out-of-plane magnetic momentum in WTe2/ferromagnetic heterostructure. The Ising magnetoresistance is believed to be an interesting counterpart to the well studied spin Hall magnetoresistance. Our predictions provide promising way to spin-momentum locking and spin-charge conversion based on emerging Ising SOC
    • …
    corecore